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The Boltzmann equation deals with a distribution f(x,  ~), where x denotes 
the space variable and ~ is the momentum. The hydrodynamic equations 
deal with se-moments of the distribution. The paper deals with the derivation 
of the hydrodynamic equations in the case that the collision kernel is 
Maxwellian, i.e., independent of the velocity. For such a kernel, a com- 
putational tool, based on the theory of representations of the orthogonal 
group, is developed. With this tool it is possible to derive systems of equa- 
tions for any number of moments. The construction of closed systems is 
based on asymptotic estimates for solutions of Boltzmann equations. 
These show that, in some definite sense, an approximating system involving 
moments of high order is more accurate than a system of lower order. 

KEY W O R D S :  Boltzmann equation; hydrodynamic equations; collision 
kernel; Maxwellian molecules; representation of the orthogonal group; 
moments ; closure problem ; asymptotic estimates. 

1 .  I N T R O D U C T I O N  

In  1865 James  Clerk  Maxwel l  publ i shed  the fundamen ta l  paper ,  " O n  the 
Dynamica l  Theo ry  o f  Gases . "  (12) In  this pape r  he was in teres ted in the com- 
pu t a t i on  o f  diffusion and  viscosity coefficients and,  mainly ,  in the  hea t  con- 
duct ivi ty  o f  gases. The  existence o f  diffusion, viscosity, and  hea t  conduct iv i ty  
previous ly  had  been pos tu la t ed  in hyd rodynamics ,  bu t  Maxwel l  devised a 
g rand  p lan  to  derive the  equat ions  o f  hyd rodyn a mic s  f rom basic  principles.  
He thus created the  field o f  s tat is t ical  mechanics  or, more  precisely,  o f  what  
is now called kinet ic  theory.  The  pape r  deals  wi th  the  connec t ion  between 
kinet ic  theory  and hydrodynamics .  

Maxwel l  cons idered  an ensemble  o f  molecules  tha t  are m a r k e d  by space 
(x) and  m o m e n t u m  (()  coord ina tes  [s ix-dimensional  space (x, ~)]. This  
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ensemble is subject to change in time due to mutual interaction between the 
molecules. If the interaction is known, one can, at least in principle, integrate 
the equations in 6-space and time. To solve the problem for a general law of 
interactions was (and still is) beyond the state of the art in mathematics, so 
Maxwell was led to postulate some "simplifying assumptions." 

He assumed a short-range binary potential acting between pairs of 
molecules. By letting the range of this potential tend to zero and by assuming 
density f ( x ,  ~) instead of discrete distribution, the force action due to the 
short-range binary potential was converted to time change off(x,  ~) only in 

space. (The famous "molecular chaos" postulate is part of the above 
assumption.) 

Maxwell was interested mainly in computing the time change of integrals 
off(x, ~) in ~: space (such as average momentum, energy, and some moments 
of higher order). In order to carry out an explicit calculation, he assumed a 
very particular potential, one that makes the resulting force proportional to 
the inverse fifth power of the distance. With this force he was able to calculate 
explicitly the time change of some of the moments (in ~ space) off(x,  ~), x 
being kept constant. Moreover, he could also show that these moments have 
limit values (as t tends to infinity). 

Maxwell considered the full motion in (x, ~) space and decomposed it 
into streaming [f(x, ~:, t) = f ( x  - ~t, ~, 0)] and "collision" (i.e., the action 
of the short-range binary potential). Then he wrote down equations of trans- 
fer for the moments. He assumed that the "collision" process is much faster 
than streaming. Consequently, he discarded certain terms, inserted limits to 
others, and arrived at expressions for the diffusion and viscosity coefficients 
as well as Euler and Navier-Stokes equations. 

The molecular-chaos, binary-collision model is widely accepted for 
dilute (nonpolar) gases as a "realistic" one. Boltzmann and later Grad ~6'17~ 
showed, by formal arguments, that the celebrated Boltzmann equation is 
obtained from the binary collision model by a limit process by which the size 
of the molecules tends to zero and the number tends to infinity such that the 
total occupied volume is held fixed. 

Lanford, (ls~ in a recent publication, sketched a procedure by which the 
Boltzmann equation is obtained from the BBGKY hierarchy. The key 
assertion is that the validity of the molecular chaos assumption for t = 0 
implies, under some restrictions, its validity for a small, positive time. 

Maxwell was aware of the Boltzmann equation. He thought, though, 
that the only equations having physical significance are the equations 
derived for the moments (his "equations of transfer"). (In a later paper, in 
1879, "On Stresses in Rarified Gases Arising From Inequalities of Tem- 
perature," he himself referred to the Boltzmann equation.) 

Boltzmann's model even now is far from being justified mathematically 
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and it is not clear what the exact passage is from finite, discrete distributions 
to the continuous limit. 

This paper goes in another direction. Maxwell was not precise in his 
sequence of approximations and truncations. In his reasoning he combined 
formal expansions and physical intuition. Improvement of his procedure has 
to start with an exact definition of the formal expansion. Hilbert suggested 
a formal power series expansion (cf. Ref. 17). Chapman and Erskog (working 
separately) obtained, essentially by Hilbert's expansion, the coefficients of 
viscosity and conductivity for fairly general molecules (cf. Ref. 3). Grad (6~ 
and Truesdell (11~ suggested thermohydrodynamic equations based on formal 
expansions. Grad used expansion in Hermite polynomials; the Truesdell and 
Ikenberry a~ expansion has a more complicated description. The equations 
suggested by the various writers do not coincide. Since the formal expansions 
were hardly supported by asymptotic estimates, it was not possible to decide 
what the " t rue"  equations are. (For a detailed criticism the reader is referred 
to Refs. 10 and 11.) 

The main objection to Maxwell's procedure is to the use of the mysterious 
molecules bearing his name. An improvement was required in the direction 
of the treatment of a general, or at least a "realistic," law of force. Hardly 
any advance has taken place in that direction. 

This paper stays close to Maxwell. A "collision kernel" is substituted 
for the force law. The basic assumption is that the "collision" (i.e., the action 
of the short-range potential) is independent of the relative (scalar) velocity 
of the two particles. (Maxwell's r -5 law is a particular case.) Accordingly, 
these molecules will be called "generalized Maxwellian molecules." Then the 
structure of the collision operator is studied. The theorems established are 
extension of theorems due to Ikenberry. (~~ The method developed in this 
paper is different. It is based on the powerful tools of representation theory 
of the orthogonal group. The proofs are, even in the Maxwellian case, much 
simpler than those of Ikenberry. 

The Maxwell-Boltzmann equation for the spatially homogeneous case 
(generalized Maxwellian molecules) is studied first. A theorem of convergence 
for the ~:-moments of the distributionf(~:, t) is proved. 

The theorem states that as t tends to infinity, all the moments of the 
distribution f(~:, t) tend to polynomials in the basic five moments: density, 
momentum, and energy. This theorem, in a weaker form, is known for a more 
general case. In the case of Maxwellian molecules, it coincides with the 
corresponding theorem in Ref. 10. 

Anticipating the problem of the construction of hydrodynamic equations 
in the spatially inhomogeneous case, we turn to the estimate of the moments 
of a certain order by moments of a lower order (not necessarily the basic five 
invariants). It is shown that every moment approaches a polynomial in lower 
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order moments. Moreover, it is shown that the estimates get better as the 
order of the moments gets higher. 

The inhomogeneous Maxwell-Boltzmann equation is dealt with in the 
final sections. Equations for ~-moments of the distributionf(x, s are derived. 
These equations involve the time derivative of a certain moment and space 
(x) derivatives of moments having higher order. At this point we suggest 
how to "close" the equation and get thermohydrodynamic equations. The 
recipe suggested is simple (at least in principle) and straightforward. The 
reasoning is based on basic welt-known arguments which are, unfortunately, 
heuristic. In the Boltzmann equation (1), the term ~=1 ~:, ~f/~x, represents 
streaming, i.e., change of position, with the momentum kept fixed. The term 
J(f , f )  represents collisions, or the action of a short-range binary potential. 
Thermohydrodynamic equations are to be obtained by a limiting process 
where the collision term becomes larger and larger with respect to the 
streaming term. Suppose, consequently, that a parameter 1/~ is inserted in 
front of the collision term J(f,f) .  Choose some point Xo and compare the 
spatially inhomogeneous equation around x0 to the spatially homogeneous 
equation where the distribution f(x, ~) takes the value f(xo, ~). For the 
spatially homogeneous case, if r is small, after a short interval of time the 
~-moments of the distribution will be close to their limiting expressions (a 
proof is furnished). For the spatially inhomogeneous equation, if E is small 
indeed, the streaming term will not change very much the relations between 
the ~:-moments of the distribution. We suggest, therefore, to substitute high- 
order moments by limiting expressions consisting of polynomials of lower 
order moments. This will "close" the equations. The estimates obtained in 
Section 5 show, in some sense, that closing the equations at a higher level is 
better. 

Some of the collision kernels do not have a finite cross section (Maxwell's 
law of force leads to such a kernel). In these cases the kernel is approximated 
by cutoff kernels having a finite cross section, and then a limit is taken. In 
this way kernels that grow like 0- 3 +, (as 0 --~ 0) can be treated. It will be seen 
in an appendix that Maxwell's kernel has a singularity of order at most 23-. 

A remark about the generality of the results. As was stated before, the 
results established hold for "generalized Maxwellian molecules." In this case 
the spatially homogeneous Maxwell-Boltzmann equation is directly reduced 
to equations in the moments. These equations are invariant under rigid 
transformations. Furthermore, they preserve positivity of density, energy, 
etc. If one starts with a so-called "general law of force," then, even in the 
spatially homogeneous case, an attempt to set up equations for the moments 
has to involve truncations, linearizations, etc. These truncations may not 
keep the necessary physical properties of the various moments. Our view is 
that one should prefer a particular law of force, provided that physically 
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meaningful equations can be obtained. (A fine discussion of "genera l"  versus 
particular laws of force is contained in Ref. 1.) 

2. THE M A X W E L L - B O L T Z M A N N  EQUATION 

The material in this section is introduced for two reasons: as a short 
reminder of the classic derivation and also for the purpose of  familiarizing 
the reader with the notation. 

The celebrated Boltzmann equation governs a distribution f(x, ~, t), 
where x = (xl,  x2, x3) denotes the space variable and ~--(~:1, ~2, ~3) 
denotes the momentum variable, f(x, ~, t) is considered to be a limit of  a 
finite ensemble of molecules in 6-space. The equation is 

~(x,~, t )  + ~ ~ x  (X,~, t)=J(f , f )  (1) 
t = 1  

The form J(f,f) already assumes molecular chaos. 
The term ~=~ ~, ~f~x, represents the time change due to streaming. 

J(f,f) represents the change due to collisions. It is a quadratic operator and 
is invariant in any subspace x = x0 [i.e., J(f,f)(xo, ~, t) depends only on 
f(xo, 7, t), where ~ varies in a three-dimensional momentum subspace]. Let 
us exhibit its structure. For  that purpose one may omit the x, t variables. In 
the case of  a finite, discrete distribution of  molecules the existence of  a short- 
range binary potential between pairs of molecules is assumed. It is convenient 
to use the term "collision" in order to describe the action of  such a potential, 
The details of  the collision process are of  no interest, only the outcome (a 
situation similar to the theory of  scattering). It is assumed that collisions are 
elastic. Let ~ and ~/be incoming velocities and ~ and ~, respectively, the out- 
going velocities. Then 

= 0/2)(~ + ~) + 0/2)~l~ - nl 
(2) 

~/= (1/2)(~ -t- ~) - (1 /2)~1~:  - w] 

where ~ is some random vector, l~I = 1, distributed on the unit sphere. Its 
distribution is dependent on the mechanism of  collision. It can be assumed 
that it is given explicitly. (This assumption "covers"  the "molecular chaos"  
assumption or the postulate of  probabilistic laws of  nature, etc.) The distri- 
bution function of  ~ may depend on [~: - *)t. The invariance with respect to 
rigid motions prevents a different type of  dependence on ~: and ~7. Taking into 
account the indistinguishability of the two molecules, one is led to: 

Hypothesis 2.1. There exists a kernel Ko(O, I~ - ~I), where 0 is the 
angle between ~ and ~: - ~7, so that the probability that ~ forms an angle 0 
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(01 < 0 ~< 02) with f - V is Ko(02, If - Vl) - Ko(01, If - ~]). The measure 
dKo is positive and is a funct ion o f  sin 0 [i.e., dKo(O, [f - ~/1) = dKo@ - O, 
I f  - w l ) ] .  

Let  us turn back to (1). The  vector ~. If - ~i can be expressed as 

g. [f - V[ = (cos 0)(f - 7/) + (sin 0)~*]f - Vl (3) 

where ~* is a unit vector  perpendicular  to f - 7/. Since K0 is dependent  only 
on 0 and If - ~/I, it follows that  the collision law also can be expressed by 

= (1/2)(~ + ~) + (cos 0)(1/2)(f - V) + (sin 0)(1/2)~[f - ~/l 
(4) 

= (1/2)(f + V) - (cos 0)(1/2)(f - 7/) - (sin 0)(1/2)~lf - V[ 

where ~ is a unit vector evenly distributed on a plane perpendicular  to f - V. 
The collision law of  two molecules leads to a law for the rate o f  change 

o f  a positive measure (mass)f (~) ,  where f ( 0  denotes the limit of  a distri- 
but ion of  a finite number  o f  molecules. The collision law (4) and the molec- 
ular chaos assumption lead to the well-known form 

l f f f  J ( f ,  f ) ( f )  = ~ [ f ( f ' ) f07 ' )  - f (~)f(~)]  dK(O, If - hi) dcp d~7 (5) 

where 

f = ( 1 / 2 ) ( f '  + ,q') + ( 1 / 2 ) , 7 1 f '  - 'q ' l  
(6 )  

�9 r / =  (1/2)(f '  + ,'q') - ( 1 / 2 ) ~ ' l f '  - w ' l  

0 is again the angle between ~' and f '  - ~'. Here ~0 is the polar  angle in a 
plane perpendicular  to f - ~. The measure dK incorporates the effect of  the 
rate o f  collisions (as well as the outcome of  each collision), which is dependent,  
generally, on If - ~/[. Therefore  dK # dKo in the general case. 

Elastic collisions of  hard balls lead to dK(O, ]f - V]) = c[ f  - 7/[ sin 0 dO; 
Maxwell 's  law of  force leads to dK(O) <<. (K1 + K20 -312) dO (cf. the appendix). 
The kernel has infinite cross section. 

Let  f ( f )  denote  mass distribution (positive measure), for  which all the 
moments  exist. Denote  moments  by ~b~, where /3 is a multiindex: /3 = 
(fl~,/3~,/3a). The first momen t  in the f l  direction will be denoted by ~b(~,o,o~: 

= f f" df(O 

P 
~1,o,o~ = j fl df(O 

f l  f~ ~ �9 Thus Denote  by fB the product  81 ~2M3 

= f f ,  ~ df(f)  

(7) 

(8) 

~b B will have the order  1/31 =/31 +/32 +/38.  The ~b~ are dependent  on f ( f ) .  
This dependence will be omitted. 
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In order  to be closer to physicists' notat ion,  df(~) will be replaced by 
f(s0 d~:, i.e., arguing as if a density funct ion does exist. The  density assumption 
will never be used and the interested mathematician can routinely restore 
df(~), measures, Stieltjes integration, etc., to the theorems and proofs.  By 
the same token,  dK(O, [~ - ~]) is replaced by K(O, ]~ - ~7[) dO. 

Let us write 

= f ~Bj( f f )  df (9) CO B 
] 

I . e r n m a 2 . 1 .  Let  K(O, Is e - - q ] )  have a finite cross section [i.e., 
fK(O, Is c - ~/[) dO < oo1. Then  

,~e = (1/2rr)(l/2)'e' ffff [e + ~ + (cos 0 ) ( f -  ~ ) +  (sin 0)1, - ~1~] ~ 

x K(O, If - -ql)f(~)f(7/) d 9 dO d~ d~7 

- f [ f f K(O, - nI)f(n) do dnl Bf(,) (10) 

where 0 ~< 0 ~< 7r, 0 ~< cp ~< 27r. ~ is a unit vector in a plane perpendicular  to 
- ~ and is evenly distributed in 9. 

Proof. By (5) and (6), 

COb = (1/27r) f f f f scB[f(~:')f(~/) - f(e)fO1)]K( O, ]e - ~/I)dO dcp d~l ds ~ 

x f(f')f(~q')K(O, 1~" - ~/[) dO d~ d~7 d~ 

- f f (#)[f f  K(O, - nl)f( )dOd@  (11) 

The second term is already in the required form. As for  the first term, con- 
sider for  fixed g' the t ransformat ion (f ' ,  -q') -+ (f,  7/). The Jacobian o f  this 
t ransformat ion is equal to one. Hence d~ d~7 = dr '  d~'. Moreover ,  for  elastic 
collisions I~: - ~7] = I~:' - ~'1. Denote,  in a way analogous to (3), 

~'1~:' - ~'1 = (cos 0)(~:' - , / )  + (sin 0)~1~' - ~7't (12) 

Substitute, now, in the first te rm of  the right-hand side of  (11), [~ - ~71 by 
1~:' - ~7'1 and d~: d~ by d~:' d~'; use also (12) to get the first term on the right- 
hand side o f  (10). (The variables s e', "7' are under  the integral sign, so they can 
be converted back to ~:, ~/.) 
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Remark. In order  that  the integral in (11) will not  diverge, it is sufficient 
to assume thatfK(O, I~ - ~[) dO is tempered in [# - 71, i.e., its rate of  growth 
at infinity is slower than some power of  I~ - 71, 

The assumption of  finite cross section will be retained th roughout  the 
paper, up to the end o f  Section 7. Then it will be seen that  the results estab- 
lished hold, by a well-defined limiting process, for  kernels having infinite 
cross sections (those that  have a singularity at O = 0 of  order  3 - E). 

Let  us verify, as an exercise in manipulat ing (1 l), the invariance of  the 
moments  of  order  one (the momentum)  as well as the energy E, 

E = �89 ) + ~(o,2.0) + ~(0.o,2)] (13) 

We have to show that  

co(1,o,o) = CO(o,l,o) = CO(o,o,1) -~ co(2,o,o) n u CO(o,2,o ) -[- CO(o,o,2 ) ~ 0 

Indeed 

o 0, = ffff + + (cos 7 1 ) +  (s in 0)1~: - 7 [ ~ 1 ]  

• K(O, I~: - 7[)f(~)f(7)  dO dr d~ d7 

- J ' f f  ,1K(O, ] ~ : -  71)f(~:)f(7)dO d, d7 (14) 

Per form first the integration dr.  Since, by symmetry,  f ~ dgo = 0, it follows 
that  in (14) the term containing (sin 0)1 ~: - 71~ drops out. All other terms are 
independent  o f g .  Integrate now dO. Since K(O, 1~: - 71) = K(sin 0, [~: - 71), 
it follows that  j ' (cos O)K(O, I~: - 71) dO = O. 

Therefore  the first term on the right-hand side of  (14) is reduced to 

f f f ( '1+ 71)K(0, , , -  7[)f(~:)f(r])dO d, d7 

which cancels the second term on the right. Similarly, 

O J(2 ,0 ,0)  ~ 

+ (sin 0)1r - ~1~1] 2 dr - r 1~ - 7])f(~)f("7) dO dr d7 (15) 

Upon  squaring the inner integral in (15), one gets a term free of  ~. It is 
constant  with respect to 9. The second term will be linear in {1. Since 
f ~ dq~ = 0, it will drop out.  The third term contains {i ~'. Let  us establish 

I~ - ~1~(1/2~)( ~ /d~o = (1/2)[(~:2 - 72) 2 + ~3)~] (16) 
J 
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For that purpose denote unit vectors along the coordinate axes by u~, i = 
1, 2, 3, and choose a new coordinate system where the unit vectors along the 
new coordinates will be e,, i = 1, 2, 3. Choose it so that e3 is parallel to ~: - ~. 
Then 

(1/27r)f ~12 d~p = (l/2=)j [(cos ~o)(el, ul) + (sin ~p)(e2, ul)] 2 d~o 

= (I/2)[(el, ul) = + (e=, ul) =1 = (1/2)[1 - (ca, ut) =1 

Multiply by [~ - V[z to get 

7tz(1/2,r)f C~e d~0 = (1/2)[1( - '112 - (el - 71) s] le 

which is equivalent to (16). 
It follows by the considerations above that the inner integral in (16) is 

equal to 

(1/4)[(f2 + ~71) + (cos 0)((1 - ~71)1 z + (1/8)(sin 2 0)[(f2 - 72) 2 + (f3 - 73) 2] 
(17) 

On adding the corresponding inner integrals from similar expressions for 
w(o,2,o) and co(0,0,2 ), one gets 

8 3 

(t/4) ~ [(~, + 7,) 2 + (~, - 7321 + (1/2)(cos 0) ~ (~, + 7~)(~ - ~) 
i = l  t = 1  

The integration dO in (i5) is performed next, summed with the corre- 
sponding formulas for ~o(o,2,o) and ~o(0.0,2). Since f (cos 0)K(#, It - 7]) dO = 0, 
it follows that 

i = 1  

x K(O, 1~ - ,~l) f (~)f(7)d~dTdO = 0 (18) 

3. S T R U C T U R E  OF THE COLLISION KERNEL 

The calculation in the preceding section cannot be applied in a direct 
way to the manipulation of (10), Instead, the powerful tool of  the representa- 
tion theory of the orthogonal group in three-dimensional space will be used 
(cf. Ref. 5). Reasoning will be based on the following facts: 

The orthogonal group admits irreducible representation spaces that are 
uniquely determined (up to an isomorphism) by a weight I, which is an integer 
or half an integer. The dimension of  an irreducible representation of weight 



424 Shmuel Kaniel 

l is 2l + 1. Thus two irreducible representation spaces having the same 
dimension are necessarily isomorphic. The unique determination of an irre- 
ducible representation space by its dimension holds, for the orthogonal group, 
only in a three-dimensional space. 

The space of spherical functions (i.e., functions defined on the unit 
sphere) that are square integrable is obviously a representation space. It is 
infinite dimensional. This space can be expressed as a direct sum of irreducible 
representation spaces having integral weights. These spaces are composed of 
spherical functions, the well-known spherical harmonics Ytm(x), where I is the 
weight and m = - l , . . . ,  0,..., I. Let ~ be a point on the unit sphere. Denote 
its spherical coordinates by (0, p). Therl 

Ytm(o, q~) = ce/tmepzm(cos O) (19) 

where the Plm(x) are known as the associated Legendre functions: 

elm(x) = c(1 - x2) -rot2 dl-m(1 -- x2)t/dx l-m (2o) 

In particular, for m = 0, 

1 d l 
Pl~ = el(x)  = 2 I. II dx l (1 - x2) l (21) 

where in (21) the Legendre polynomials el(x) are normalized so that el(l)  = 1. 
The spaces of spherical harmonics are invariant under rotations. Let U 
denote an arbitrary rotation. The invariance is expressed by 

Y,m(uC) = a m(U) YI (C), ICI = 1 (22) 
/r 

The properties listed above imply the following lemma..  

L e m m a  3.1. Let I be an integer. Let slm(~) denote a system of 21 + 1 
spherical functions. Let these functions satisfy 

slm(U ) = (23) 
/r 

[i.e., the same coefficients as in Eq. (22)]. Then the slm(~) must be spherical 
harmonics corresponding to the weight L 

Another property is pl y m(~) = p(o~), where P is a homogeneous poly- 
nomial of degree l in the vector variable ~7 = P~. Conversely, any homogeneous 
polynomial of degree l can be uniquely expanded by 

[ l /2]  

P(~) = ~ p2kPl_2k(pC ) (24) 
k=O 
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where P~_ 2k are homogeneous of  order t - 2k and each of  which can be 
expressed by 

P,-2~(p0 = p~-2~ ~ ~ r~'~ (25) 
m 

The following general property will also be used. If a transformation T 
in an irreducible representation space commutes with all rotations, then it 
must be a multiple of  the identity. 

The arguments above will be used in the manipulation of  (I0). For the 
time being, take K(O) to be an even kernel [K(0) = K(Tr - 0), or, equivalently, 
K(O) = K(sin 0)]. 

kemma 3,2. Define 

s~m(~7) = (1/2*r)f~• Y~(~)d9 (26) 

where ]~[ = 1 and ~0 is the polar angle in the plane perpendicular to ~. Then 
s,m(~l) is a spherical harmonic. 

ProoL Consider any orthogonal transformation U. Then 

f, l f, Y~(U~)d9 (27) 1 y r%) d9 = I y m(r d9 = ~ "r • s ~ (  u~) = ~ . ~. 

where ~ = U*~. 
Observe that in the last passage we changed the circle on which inte- 

gration was performed, in both cases using ~v as the polar angle. 
Substitute (22) on the right-hand side of (27) to get 

S[~(Un) = (1/2rr)fr177 ~ a~m(u)Y,~(~)d9 

= ~aZ(U)(1/2~r)f~• yk(~)d9 = ~akm(U)Sz~(n) (28) 

Thus, by Lemma 3.1, this lemma is established. 

where 

Lomma 3,3. The following holds: 

Sz"(V) = c(1) Yz"('l) (29) 

c(1) = o, 

c(1) = ( -  1) zI~ 

l odd (30) 

1.3- 5--- (l -- 1) t even (3 t) 
2 - 4 . 6 . . - I  ' 
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ProoL Denote, for spherical functions, S(0:  U S ( ~ ) =  S(U~).  Define 
T: Yz m ~ Sz m. By Lemma 3.2 it is a transformation in an irreducible space of 
spherical harmonics. Thus 

TUYz=(~) = TY~"(U~) = T ~, a~m(U) Y~"(~) 

= ~,. akm(U)TY~k(~) = ~ a~m(u)stk(~) 

= S,m(U~) = U S , ' ( ~ )  = UTytr"(~) (32) 

T commutes with all rotations and consequently is a multiple of the identity. 
Thus (29) is established. As for the computation of c(l), for that we can 
utilize a convenient choice of y m and 7. Let us choose V = (1, 0, 0) and y m = 
P,(cos 0), where Pz is the Legendre polynomial of order l, as exhibited in 
(21). Since ~7 = (1, 0, 0), the integration in (26) is performed on the circle 
0 = ~r/2, i.e., cos 0 = 0. In this case the right-hand side of (26) will be equal 
to the free term of Pz(x), as exhibited on the right-hand side of (30) and (31). 
Since Yzm(7) = Pz(1) = 1, the lemma follows. 

L e m m a  3.4. Let Q(s be a homogeneous polynomial of order I. Then 
for ~ perpendicular to ~ - ~ ([~[ = 1) 

1s - ~/l'(1/2rr)f Q(~) d~ = P(~ - ~7) (33) 

where P is a homogeneous polynomial of order I in the variable s - 7. If l 
is odd, then P(s - ~/) = 0. 

Proof. Consider, first, the case where 

Q(~ - ~) = I~ - 7/['Q(0 = I~ - 7[tYzm(0 (34) 

In this case, by (29) it follows that 

I~ - ~l'(1/2~')y Q(g) &o = 1~ - ~lZ(1/2~)f Ylm(~) d~ 

= I ~  - nl 'c(t)Y,~(~) = c(1)Q(~ - ~7) (35) 

As for the general case, use the expansions (24) and (25), which, together 
with (35), establish (33). 

Observe also that if 1 is odd, then the expansions (24) and (25) contain 
only polynomials having odd degree. For each of these, by Lemma 3.3, the 
multipliers c(l - 2k) vanish. Thus P(~ - ~7) vanishes identically. 
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The next step will be the integration d~o of formula (10). In (10) expand 
the brackets [ ] to get 

[~: + 7 + (cos 0)(f - 7) + (sin 0)If - 71~] ~ 

= ~ b,~,~,.(f + 7)~(cos Of"l)(f - 7)"(sin Ol'~f)]( - 7)'~ ~ (36) 

where the summation extends over all nonnegative multiindices. 
The right-hand side is now substituted in (10) to get 

~oa = (1/27r)(1/2) I~l ~ b~,,a,u 
g + h + t t = B  

• f f f (f + 7)a(cos OlUl)[f -- 71["l(sin O [~l) 

By Lemma 3.4, 

If - 7 1 ~ ( 1 / 2 ~ ) f  C"d~ = P . ( f  - 7) (38) 
J~ •  

Substitute (38) in (37) and consider the following expressions in this formula: 

7) lf - vl'  P.(f - 7 ) f  cos  sin 01~J K(O, If - 71) dO (39) (f  + 

Since K is a function of sin 0, it follows that for odd the integral in 
(39) vanishes. Thus the sum in (37) needs to be evaluated only for even [t~l. 
For these, If - 71J"j is a polynomial in f - 7. Denote now 

Qo(f, 7) = (1/2rr)(1/2) IBI ~ b,~.a.~,(f + 7)a[f - .q[lul 
~ + h + t t = B  

I.u[ even  

• P~(f - 7) cos 0 lul sin 01.1 (40) 

and again substitute in (37). The result is expressed by: 

kemma 3.5. 

f f f Qo(f, 7)K(O, [ f -  7] ) f ( f ) f (7)df  d~ dO 038 ~ 
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where, for each 0, Qo(f, ~1) is a polynomial in the six variables ~,  V~. It is 
homogeneous of order 1/31- 

Lemmas 3.2-3.4 will be used to compute the derivatives d~r Even at 
this point it is clear that they offer a big advantage over a direct computation. 
[Compare to the verification of formula (18).] 

4. GENERALIZED M A X W E L L I A N  LAW OF FORCE 

This term refers to kernels that are independent of ~ - ~. In this case a 
further reduction is possible, i.e., the integration dO can be explicitly per- 
formed. 

L e m m a  4.1. For K = K(O) 

= f - cejm):(,,) a,, (42) 

where QB is a polynomial in the six variables ~,  ~7~. The polynomial is homo- 
geneous of order 1/31, and c is the constant f K(O) dO. 

Proof. Consider the proof of Lemma 3.5. Denote, in this case, 

aa(~:, ~/) = (1/2~')(1/2f al ~ b,.a,u(~ + ~)al~ - ~l'"l?,(~: - ~/) 

x f cos 0 lul sin 0 t~t K(O) dO (43) 

Since, again, for odd l/z], the integral in (43) vanishes, it follows that Qa(f, ~) 
is a polynomial in ~ and 7. 

Theorem 4.1. For K = K(O) 

oJa = ~ a..a,,~b,,~b , - c~b(o,o,o>~b a 
I<~1 + I:'1 = [BI 

= ~b(0 '0 '0) I r  act'B~bet + o<lal<l#l~ a,.a,r~,qJr - C~(o,o.o)~ba (44) 

where the constants a~.a.r depend on K(O). 

Proof. Denote in (42) 

or+ l~ = B  

Since 

the desired formula (44) is obtained. 

(45) 
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Theorem 4.1 is due, in the special ease of  Maxwellian molecules, to 
Ikenberry. ~11) The result given here is more general and the proof  is con- 
siderably simpler than that of  Ikenberry. 

The reader has undoubtedly noticed that the expression f(~)f(7)d~ d*l 
is carried unchanged throughout the computation [except for the relation 
(45)]. The lemmas that were established deal with polynomials defined on 
space. Let us state now an isomorphism between moments and homogeneous 
polynomials as follows: 

Basic Isomorphism. Associate with the moment ~ the homogeneous 
polynomial ~B. Then oJa will be associated with Qa(~, 7) - cU. The corre- 
spondence, expressed explicitly, is 

wB ~---~ (1/2~r)(1/2 '~') f f [~ + 7 + (cos O)(s ~ 

+ (sin 0)l~ - 7[~]BK(0) dO d~ - ~af I,:(0) dO (46) 

where ; is evenly distributed on a plane orthogonal to ~ - 7- 

In order to compute oJa as a bitinear form in the moments [i.e., Eq. (44)], 
one has to compute Q~(~, 7) - c~ a, then substitute back moments r and 
~r instead of  U and 7 ~, respectively. In particular, the coefficients of  the 
moments having highest order are obtained by considering the parts of  
Q~(~, 7) that depend only on ~ or only on 7. Denote these by Q~z~(~) and 
Q~2~(7), respectively. Equation (43) leads to 

Q~t~(~) = (1/2rr)(l/2)lal ~+ a+~u =B b"'a'"~:al ~:1 ~"j 

P,~(~)f cos 01,t sin 01~l K(O)dO (47) X 

Q~>(7) = (1/2~r)(1/2) tal ~ ,  b~,a..Tal-Tl t"~ 
t~+ A~+/z=B 

P = ( - 7 ) f  cos O'"' sin 0 l~I K(O) dO (48) x 

Since the polynomials P ,  are homogeneous of  order la] and vanish for odd 
la] and since I - h i  = 171, it follows that 

Q~(7) = Q~1~(7) (49) 

The result is as follows: The computation of  the coefficients of  moments 
having highest order can be done by multiplying Eq. (47) by 2 and then 
substituting back the moments ~b~ for the monomials U. 
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The arguments above lead to the following characterization of the a~, B 
in (44): 

l . emma  4.2. Consider the space of homogeneous polynomials of order 
m. Choose as a basis the polynomials ~ :  1/31 = m. Then a~, e will be the 
entries of the matrix representation of the transformation Am in that space 
defined by 

A'~{~} = 2~" 2 '~-1 [(1 + cos 0)f + (sin o)IftgPK(o) dO d~ 

-~.~ ~,~ (50) 
where ~ is a unit vector perpendicular to ~. 

ProoL One has to show that the expression (50) is equal to twice 
expression (47). The middle part of (50) is evaluated in exactly the same way 
as the first term on the right of (46). Thus 

2~- 2 ~- ~ [(1 + cos 0)~ + (sin O)f~IeK(O) dO d~ 

1 1 
- 2rr2"-1 E b~,',"#al #I~"LR=(D 

oc+,k+/t =B 

where 

Recall that 

x f cos 0 l~l sin 0 I~i K(O) dO (51) 

(52) 

t "  
e~(~ - ~) = I~ - ~ ? |  ~ a ~  

J~ J.~ -n  

I t  is clear that P~(~) = R~(~). Recall also that i/~l = m. Thus expression (51) 
and, consequently, (50) are equal to twice expression (47). QED 

Lemma 4.3. Let ~ = pn, where tnl = 1. Then all the eigenfunctions 
of  A~ can be expressed as 

Q,~,z,j(~:) = pm Y~-2~01) (53) 

ProoL For any polynomial Q(~) 

' ' f f  A,~Q(~) = 2rr 2 m-1 Q[(1 + cos 0)f + (sin o)t~Iglg(o)dO d~ (54) 



Thermohydrodynamic Equations from the Boltzmann Equations 431 

where ~ 3_ f. Hence 

AmQ,.,~,j(~) = 2rr 2 m-~ Qm,~j[(1 + cos  0)Is + (s in O)l~Ir dO & 

1 1  ff - 2~r 2 m- 1 P '~ Q,~.k,j[(1 + cos 0)7 + (sin O)~]K(O) dO d~ 

Since g _L 7, it follows that 

I(1 + cos 0)7 + (sin 0)g] = (2 + 2 cos 0) II2 

Therefore, by homogeneity of Q~.~.j, 

1 1 pm f f  (2 + 2 cos 0) m/9 Y~-2kfJ3)K(O) dO do;, (55) A"a"~'~z(~) = 2rr 2 =- t  

where/3 ([/31 = 1) is a vector parallel to (1 + cos 0)~/+ (sin 0)~. (This/3 is 
not an exponent.) 

Apply now the "representation of the orthogonal group" arguments, this 
time to polynomials defined in the whole space: 

a,.Q=.k,j(U~) 

12,r 2 "~- 1 ff Qm,~ j[(1, + cos O)U, + (sin O)I~IK*]K(O)dO d9 

- 2rr 2 m-1 Qm.~z[(l + cos O)Uf + (sin 0)l~: 1Ug]K(O)dO drp 

where ~* _i_ U~:, ~ _1_ ~: (consequently ~ _L 7). Note also here the change in 
the domain of the integration d~ [cf. the remark following (27)1. 

Since Ug 3_ UT/it follows that 

t(1 + cos O)U~ + (sin O)U~I = (2 + 2 cos 0) lt2 

Therefore 

AmQ,~.~.Au~) = 2~- 2 '~- 1 pm (2 + 2 cos  o) m~ g~_ ~(U/3)K(O) dO & 

where fl was defined in (55). 
The last expression can be rewritten as [cf. (22)1 

~72m_ 1 p= (2 + 2cos 0) "t2 a,J(U)Y*m_2k(/3) K(O) dOd9 

The aJ(U) can be taken out of  the integral to yield 

AmQm,k.s(U~) = ~ ad'(U)Ar~Qm.r~.,(f) 
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For fixed m and k the index j takes the values - ( m  - 2k) ..... 0,..., m - 2k 
[cf. (53)]. The span of {Om,k,j} is an irreducible space, this time composed of 
homogeneous polynomials. These homogeneous polynomials must coincide, 
on the unit sphere, with spherical harmonics and Am must be, on each 
irreducible space, a multiple of the identity. Thus the Qm,~,j(~) are indeed 
eigenfunctions of Am. The eigenfunctions Qm,~.j form a basis for the space of 
homogeneous polynomials of order m. Therefore these are all the eigen- 
functions. 

L e m m a  4.4. The corresponding eigenvalues (of Am) are 

~tm, tc j  = ~ra,lc = (1/2m-1) f (2 + 2 cos O)mlzPm_2k(COS �89 (56) 

Proof. It is already known that the eigenvalues are independent ofj .  Let 
us choose a convenient spherical harmonic, i.e., Qm,g,o: 

Qm,k,o(~) --- pmY~ = PmPm-z~(COS t), COS t = (e3, ~) (57) 

Take also a convenient ~: ~ = e8 = (0, 0, 1). Thus Qm,~,o(e3) = 1, and by 
(54), 

, i f  AmQm,~,o(e3) = 2rr2m_l Qm,~,o[(1 + COS 0)eo + (sin O)~]K(O)dOdq~ (58) 

where ~ _Lea. 
Substituting (53) into (54) and noting that the magnitude of (1 + cos 0)ea 

+ (sin 0)~ is (2 + 2 cos 0) 1/2, one gets 

AmQm,k,o(ea) = (1/2m-1)f (2 + 2 cos O)ml2y~ ) dO (59) 

where [/3[ = 1, 

/3 = (2 + 2 cos 0)-1/2[(1 + cos 0)ea + (sin 0)~] 

Since ~ _1_ e8 it follows that 

(/3, ea) = (1 + cos 0)(2 + 2 cos 0) -llz = [�89 + cos 0)] 1/2 = cos �89 

We substitute now in (59) to get 

AmQm,~,o(e3) = (1/2 m- 1) f (2 + 2 cos O)ml2Pm_zk(COS �89 dO 

which is the desired result (56). 
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L e m m a  4.5.  Let  c = fK(O)dO. Suppose that  K(O) is not  suppor ted  
jus t  by the points  0 = 0 and 0 = 7r. Then 

Al,o = '~2,1 = c (60) 

A2,o < c (61) 

A,.,~ < c, m /> 3 (62) 

and Am,~ - +  0 as m --+ oo. 

Remark. I f  K(0) is suppor ted  only by 0 and 7r, it means  that  two colliding 
molecules do not  change their velocity. 

Proof of  the Lemma. For  Al,o substitute Pl(cos  �89 = cos �89 for  A2,~ 
substitute Po = 1, and integrate. The  computa t ion  of  A2.0 is instructive and 
will be needed later. So 

A2.o = ( 1 / 2 ) f  (1 + cos 0)(3 cos 2 �89 - 1)K(0) dO 

= (1/4)c + (3/4)c2 (63) 

where 

/ .  

= J cos 2 0 K(O) dO (64) c2 

Since c2 < c the result follows. As for  m t> 3, use the fact tha t  K(O) = 
K(zr - 0) and the simple inequality 

(1 + cos O) m/2 + [1 + cos(~r - 0)] m/2 = (1 + cos O) m/2 + (1 - cos O) m/2 < 2 m/2 

(65) 

Since for  - 1 ~< x ~< 1, IPj(x)l ~< 1, substitute 1 instead o f  P,~_2~(cos �89 
and est imate the quantit ies tha t  fol low: 

S ( 1  + c o s  O)ml2Pm_zk(COS �89 dO 

jo ~< (1 + cos O)m/2K(O) dO 

f 
~/2 

= [(1 + cos 0) ~/2 + (1 - cos O)m/2]K(O) dO 
~'0 

f 
~/2 

< 2m/2K(O) dO = 2m12-1e 
,gO 

Substi tut ion o f  the last inequali ty in (56) yields (62). 
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As shown in the last inequality, 

lam, l 2ff/  ( l+c~ 2 O) m/2K(O) dO 

As m tends to oe the integrand tends to zero uniformly on any interval [e, 7r]. 
Thus the last assertion of the lemma is established. 

Sometimes it is better to use an equivalent expression for 1re,k: 

Ar~,~ = 2 ~  (cos �89 �89 dO, m I> 2 (66) 

It is interesting to note that similar formulas hold for the linearized Boltz- 
mann equation (cf. Ref. 4). 

Remark. The basic isomorphism is a correspondence between poly- 
nomials and moments. Let us denote the moments corresponding to 
Qm,kd(~) by ~m,~,s. These are called "spherical moments"  (cf. Ref. 10). 

5. THE SPATIALLY H O M O G E N E O U S  M A X W E L L - B O L T Z M A N N  
EQUATION AND A S Y M P T O T I C  EXPANSIONS 

I f f (x ,  ~, t) is independent of  x, then Eq. (1) reduces to 

Of/at --- J( f , f )  (67) 

Let us multiply it by ~B and integrate d~. Then, by (9), 

d4,a/dt = co B (68) 

The oJ B were studied in the last section. In particular, when K = K(O), ~o a is 
polynomial in the moments ~b,: ]al ~< [/31. Let us recall that the Qm,~,j(~) form 
a basis for the space of  homogeneous polynomials of  order m. Thus, by the 
basic isomorphism, the spherical moments Sm,k,j form a basis for the space 
of  moments of order m. Theorem 4.1 together with Lemma 4.4 may be re- 
stated as follows: 

L e m m a  5.1. For  K = K(O) 

d$m,u,j/dt = ~b<0,0,0)[Am,~ - C]~m,~,S + Pm,~,j(c~,,r,s) (69) 

where l < m and Pm,~c,j is a quadratic polynomial. 

Remark. Pm,kj may depend on j. Its exact form may be calculated 
explicitly or by the use of products of  representations. Both ways are very 
complicated in the general case. I could not find a simple reduction as in the 
highest order case. 
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Theorem 5.1. For generalized Maxwetlian molecules lim~_~| ~bB(t ) 
exists for all/3 and 

lim ~bB(t ) = FB(~b<o,o,0), ~b(1,0,o), ~b<0,1,o), ~b(o,o,1), E) (70) 
t--* tO 

The F B are polynomials in their arguments. 

Remark. The arguments in Fo are the familiar density, momentum, and 
energy. It is clear that they are independent of  t. The constancy of the basic 
five moments was derived as an exercise in Section 2. There it was shown 
that the corresponding a,a vanish. Thus, by (68) the respective ~ba are constant. 

Proof of Theorem 5. L By induction on m. For m = 0, 1 the ~,n,~.s are 
the invariants. For m = 2 the energy E is ~b2.1, again an invariant. For all the 
other ~bm,~,j (m /> 3 and five spherical moments for m = 2) it follows, by 
Lemma 4.5, that 

m~,~ = ~b(0,o,0)[km,~ - c] < 0 (71) 

Equation (69) can be integrated to yield 

q~m.~,j(t) = [exp(t~,kt)] [exp(-t~z)]P~,,z,j(~bt.~.s(~-)) d'r -t- Cm,~,j(0) (72) 

Since I < m, r converges to a limit as t--~ to by the induction hypothesis. 
Therefore P~,k,j(~,k,j(t)) also converges. In the limit, by the induction 
hypothesis, 

lim ~,,~,y(t) = Gl,k,j(~(o,o,o), ~b<~,o,o>, V~(o,l,o>, V~(1,o,o>, E) 
t-~, oo 

(the ~z,~,y can be expressed by the V~a and vice versa!). Pm,k,y is a polynomial 
in the moments; therefore Pm,~,y(G~,~,j(')) is also a polynomial. Now take the 
limit in (72) to get 

lim q~,~,k,j(t) = (t~m,~)-zPm,~;,~(G~,~.~(')) 

which is the required form for order m. 
Once the theorem is established, it is relatively simple to compute the 

F~. Use a particular distribution, i.e., the celebrated Maxwell-Boltzmann 
distribution 

g(~) = b exp( -a l~  - ~12) 

This distribution is invariant under collisions. Moreover, it is determined by 
the five parameters b, a, ~. It follows that ~b(o,o,o)= (1/2)(2zr)a/~a-a/Zb, 
~b(~,o,o) = ~b(o,o,o), and E = (3/4)a-a~b(o,o,0). So, for this distribution one 
can compute the moments explicitly, then express them in terms of  the 
~nvariants. Theorem 5.1 is known for two special cases: elastic spheres (z) and 
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Maxwellian molecules. ~11) The proof  above is considerably simpler than 
previously constructed proofs. 

The problem of the rate of  decay is considered next. For that problem 
(70) should be replaced by asymptotic estimates. Let us consider a more 
general problem. Suppose that an estimate of a certain moment in terms of 
lower order moments is desired. What estimates can be established ? Do we 
get better asymptotic estimates by allowing the order of  the estimators to be 
higher? It will be shown that the answer is yes. 

Our starting point is formula (69) with the substitution of/z~,k [as defined 
in (71)] 

dq~m,~,Hdt = tz,~,kf~,k,~ + P.~,k,j(~l,~,s) (73) 

Let us state the following elementary lemma. 

k e m m a  5.2. Suppose that ~,~.~.j(t) satisfies the differential equation 

d~.~.j/dt = tzm,jp,.,~.j + ~ C, exp(v~t) (74) 
t 

where v~ #/~,~,k. Then 

~m,g,j(t) = [~ra,u,j(0) -- ~C,(v,--/zr~.~c) -1] expOz,~,kt) 

+ ~ C~(--t~rn,~ + v,) -~ exp(vJ) (75) 

ProoL Compute. 

In (73) a spherical moment of  order m, i.e., ~,.,g.j, is related to spherical 
moments of  lower order. In the general case not all the spherical moments of  
order less than m are arguments in the polynol.nial P,~.k.j('). The following 
definition is a natural consequence. 

Def in i t ion .  ffm.k,j is a direct successor of  ~,,,~ if in formula (73) r 
is one of  the arguments in the polynomial P~.~.j(-). ~,~.k.j succeeds ~ .... if 
there is a chain of  direct successors leading from q~z.~., to ffm,~.j. 

It turns out that the computations are simpler if ~,., k,~.(t) can be expressed 
as a sum of exponentials. Observe that if ~t,r.s(t) can be expressed as a sum of 
exponentials, then Pm,~,~(~l,r,s(t)) is also a sum of exponentials. 

Thus the case where the ~.k,~ can be expressed as a sum of exponentials 
will be treated first. This will be done via a technical condition (Condition I) 
defined recursively as follows: q~m,~,~(t) satisfies Condition I if: 

(i) All ~bz,,,~(t) preceding q~m,~,j(t) can be expressed as a sum of ex- 
ponentials. Furthermore, the q~z,~.~(t) should also satisfy Condition I. 

(ii) None of  the exponents appearing in Pm,~.j(~z.~,~) is equal to/z,~.~t. 

The basic invariants certainly satisfy Condition I. 
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kemma 5,3. If  ~bm,~,j satisfies Condition I, then there exists a poly- 
nomial R,~,k,s in the variables (~,r,s, l < m, for which 

~m,~,~(t) - Rm,~,~(~z,r,s(t)) = dm,k,~ exp(F,.,kt) (76) 

ProoL By "tree induction." Suppose that all the spherical moments 
preceding a certain spherical moment satisfy 

~mJc, j ( t )  = d~,k,s exp(/~.~t) + ~ C,,r.,~,j exp(v~,m.k,jt) 

= dm,k,j exp(/zmjct) -t- Rm,k,~(~t,r,s(t)) (77) 

where 

V,,m,k.y = ~ nl,il~t,r (78) 
l<m 

SO that n~,~ ~ 0 if, for some r and s, dt .... r 0. In order to "climb the tree," 
proceed as follows: Denote the ffm.k,j for which, in (70), dm,k,j ~ 0 by 
"spherical moments of the first kind." If, accordingly, d~,~,j = 0, the 
corresponding ~,.,k,j will be of the second kind. 

Add now two more statements to the induction hypothesis. 
Each spherical moment of the second kind is a polynomial in spherical 

moments of the first kind. 
If, for some j,  ffm,~,j is of the first kind, then the function exp(/~m,~t) can 

be expressed as a polynomial in ffm,k,j and spherical moments of the first 
kind: ~,r,~ where l < m. 

Start now the induction cycle with (69). Pm,~.j(~,r.~) is a polynomial in 
spherical moments preceding ~m,k,j. By the induction hypothesis these can 
be expressed in terms of spherical moments of the first kind. 

Each of these, by (77), is a sum of exponentials for which (78) is satisfied. 
Upon substitution in (77) one gets 

d~m,~,j/dt = t~m,kr + ~ Ci.m,~,j exp(v,,m,k,j) (79) 
t 

Hence, by Lemma 5.3, the left-hand side of  (77) is established. Note that 
v~,m.k,j is of the form (78), where on the right-hand side the index 1, r (attached 
to all the ~bt,r,~) precedes m, k. Therefore, by the induction hypothesis, each 
exp(v~,m.k,jt) is expressed by a polynomial in the spherical moments of the 
first kind. Thus the right-hand side of (77) is also established. 

Now, if for some k, j ,  dm,k,j = 0, then ~m,k,j is declared to be of the 
second kind and by the left-hand side of (77) it can be expressed as a poly- 
nomial in the spherical moments of the first kind. 

If, for some k, j ,  dm,k,j r 0, then ~,~,e,j is found to be of the first kind. 
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Then read (77) as 

exp(/~m,~t) = d~,~,j[~m,k,i(t) - Rm.~d(gat,r.s(t)) ] (80) 

The right-hand side is, indeed, a polynomial in the spherical moments of the 
first kind. Thus the induction cycle is complete. 

Lemma 5.3 is based on a correspondence between moments and ex- 
ponentials, as expressed in (77) and (80). If Condition I is not satisfied, i.e., 
in (78) one of the exponents v~ is equal to ~m,~, then Eq. (75) has to involve 
the term t exp(/~m,J), Thus, by a reasoning similar to that of  the proof of 
Lemma 5.3 the following is established. 

Lomma 5.4. If  Condition I is satisfied for all ~,T.~ preceding ~,.,~,j but 
is not satisfied for ~b,~.k,j, then 

(am,k,j( t ) -- Rm.lc,j( ~l,r,s( t ) ) = dm,k, j exp(/~m,ut) + ~m,k,jt exp(/zm,kt) (81) 

Thus we no longer retain the correspondence between moments and 
exponentials. But, in this case, the fact that Condition I is not satisfied 
means that exp(/zm,~t ) already is expressed as a polynomial in spherical 
moments preceding ~m,~,j. Therefore, 

t exp(/~m,kt) = ~,~,~,j[t~m,k,~(t) -- -Rm,k,j(Ot,r.s(t))] (82) 

Passing now to the general case, we set up a correspondence between 
spherical moments and powers times exponentials. 

T h e o r e m  5.2. For any spherical moment ~m,k,j there exists a poly- 
nomial Rm,k,y in spherical moments of lower order so that 

~m,~,y(t) - R~,k.j(~z,r,s(t)) = exp(/zm,~t) ~ d~,k,j.,t' (83) 

For the proof  one needs the following: 

L e m m a  5.5. Suppose that 4'm,k,j(t) satisfies the differential equation 

Nt 

d~m,k,j(t)/dt = /Lm,k(~m.k,j" + ~ ~ C~,n[exp(vJ)]t ~ (84) 
i n=l 

Then, if none of  the v~ is equal to/~,~,~, 
Ni 

(~m.k,j(t) = dm,~.~-exp(/zm.~t) + ~ ~ d~.~[exp(vJ)]t ~ (85) 
i ~=I 

If one of  the v~, say vj., is equal to tZm.~, then 

~m.k.j(t) = dm,k,j exp(/x,~,kt) 
Nl 

+ x~ ~ d,.~[exp(vj)]t ~ + d~,Nj+l[exp(iz,,,kt)]tNj+l (86) 
t ~=I 

Proof. Obvious. 
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Proof of Theorem 5.2. Again by a reasoning similar to that of Lemma 
5.1, prove inductively and start with the expression Pm,~,j(c~,r,s). Each of the 
q~t,r.~ can be expressed in terms of powers times exponentials. Hence 
Pm,~,j(~bg,~,~) also is expressible in terms of  powers times exponentials. Thus, 
in analogy to (79) we get 

N( 

d4m,k,/dt = t~,~,k4~,k,j + ~, ~ c~.,~.~d,.[exp(r~,~,~,d)]t" (87) 

Each of  the terms in the double sum on the right-hand side of (87) is expressible 
in terms of moments. 

When integrating (87), either (86) or (85) is obtained if, accordingly, 
one of  the v~.m,k,j is equal to/Lm. ~ or is not. 

If  (85) holds, then exp(tz,~,d) can be expressed as in (80). If (86) holds, 
tNJ +1 exp(/~m,~t ) can be expressed by moments, taking into account that, for 
n ~< Nj, t~exp(/~m.d) had already been expressed in terms of moments 
preceding Sm,k,s. In either case (83) is established. The expression for 
tNJ + ~ exp(/~m,d) is used in the subsequent induction step. Thus the theorem 
is established. 

Corollary to Theorem 5.2. Denote limt~ ~b~,~,j(t) by * | ~ .k, j .  Then 

�9 = R * 4~.~.J ~.~.j(~,,r.3 (88) 
Proof. Take the limit in (83). 

6. THE T H E R M O D Y N A M I C  EQUATIONS 

Let us consider the Maxwell-Boltzmann equation (1). The approximation 
of  this equation by thermodynamic equations constitutes a basic problem in 
kinetic theory [a thermohydrodynamic system is a system of equations in- 
volving a finite number of  the (-moments of  the distribution f(x,  ~, t)]. 
Rigorous results so far are "meager ''(14~ and the reasoning is almost ex- 
clusively heuristic and formal. 

In this section we suggest a method of  constructing a hierarchy of  
thermohydrodynamic systems. It is based on the theorems obtained for 
generalized Maxwellian molecules. A good part of  the reasoning is still 
heuristic. 

For that purpose multiply Eq. (1) by ~:~ and integrate d~:. One gets 

d~a(x , t )+  ~ 0 ~ ~ba+e,(x , t) 
i = l  

= ~b(o,o,o)(X, t)tal=~lal__ aa,a~r t) 

+ ~ a~,a.,~b~(x, t)~by(x, t) - c~b(o,o.o,(X , t)~b,(x, t) (89) 
laI+ivl =l~l 
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where fl + el = (/31 + 1,/32,/33). This formula holds only for generalized 
Maxwellian molecules and follows from Eq. (44). 

Since 1/31 = m implies Ip + e,l = m + 1, the system (89) cannot be 
decomposed into finite subsystems. 

Let us exhibit an equivalent form to (89) which is invariant under 
rotations. The variables in this system will naturally be the spherical 
moments. 

Equation (69) exhibits the system in the spatially homogeneous case. 
When the x dependence is taken into account, the full system turns out to be 

t) 
dt 

+ t) 
t = l  

= r - C)r t)  + Pm,k,j(r t)) (90) 

The '~m*,k,j,~ are combinations of  moments having order m + I. These com- 
binations are obtained by expressing the spherical moments as a combination 
of the moments ~bB, then replacing ~ba by 4~B+e,, and finally transforming 
back to spherical moments. Some explicit computations are carried out in 
Section 7. 

The problem of the construction of approximating (or limiting) thermo- 
hydrodynamic systems may be split into two parts. 

Part  A:  How to choose a finite set of spherical moments to be the vari- 
ables in a thermohydrodynamic system. 

Part  B: How to "close"  the system. The term "closure" refers to the 
substitution in (90) of any moment not chosen to be a variable by a com- 
bination of the variables of the system. 

In the case of generalized Maxwellian molecules, the "collision term" 
[i.e., the right hand side of (90)] does not pose a closure problem. One has, 
though, to impose the following consistency condition. If  ~m,~,j is chosen, 
then all the 4,z,r,,, i.e. the variables in the polynomial P,~,e,~, have also to be 
chosen. 

Let us turn to Part A. It is well established that the fundamental system 
consists of the basic five invariants: density, momentum, and energy. These 
correspond to the spherical moments ~o,o,1, ~1.0,~, and ~2,1,1, respectively. 
(In the sequel ~o,o and ~2,1 will be used in place of 4,o,0,1 and ~b2,~,~, respec- 
tively. In general, if the j index will be only the integer one, it will be sup- 
pressed.) 

Let us review a possible line of reasoning that suggests the choice of the 
fundamental system. Consider the spatially homogeneous equation df/dt  = 
( 1 / c ) J ( f , f ) ,  where E is some small parameter. Change the time variable 
T = tiE. Thus df/d'r = J ( f , f ) .  It follows that keeping t fixed and letting 
tend to zero i~ equivalent to letting 7 tend to infinity. Hence, in case the 
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collision term is large, after a finite time t all the moments will be close to 
their limiting values, as expressed in Theorem 5.1. 

Consider now the inhomogeneous equation. Choose some point xo 
and compare the spatially inhomogeneous equation around Xo to the spati- 
ally homogeneous equation at xo. For the spatially homogeneous case, if E 
is small, after a short time interval the ~:-moments of the distributionf(x, ~, t) 
will be close to their limiting expressions. For the spatially inhomogeneous 
equation, if E is small indeed, the streaming term will not change very much 
the relations between the ~-moments (heuristic reasoning!). Thus the basic 
five invariants are chosen also in the inhomogeneous case. For further 
discussion the reader is referred to Truesdell. ~11'~4~ 

Suppose, now, that a finer approximation is desired. For that we suggest 
the following reasoning. Consider, not just the limit, but also the asymptotic 
behavior of the moments, as expressed by Theorem 5.2. Specify exp(~t), a 
rate of decay, and consider all moments for which t~m.k >/ tz. These will be 
the variables in a thermohydrodynamic system. 

Since t~m,~ = @ ( o , 0 , o ) ( / ~ m , / c  - C), one may also base the decision upon the 
)'m,~. Let us compute these for the moments having lowest order. It is already 
known that ~'z,o = ~,~ = co = f K(O) dO and that ~2,0 = �88 + �88 where 
c2 = f cos 2 0 K(O) dO. Now 

a3,1 = 2 f  (cos3 

= � 8 9  + 

a ,o = 2 f  (cos  

= 2 f  (cos, 

= 2 f  (cos  

�89 �89 dO 

cos O)2K(O) dO = �89 + c2) (91) 

�89 �89 dO = - ~Co + ~c2 (92) 

�89 dO = �89 + c2) (93) 

�89 �89 dO = ~co + -~c2 (94) 

~4.o = 2 f (cos 4 �89 �89 dO 

= (35/64)c~ + (21/32)c2 - (13/64)Co 

[where c~ = f (cos 40)K(O) dO] 

As.z = 2 f  (cos 5 �89 �89 dO = �88 + �88 

A5,1 = 2 f  (cos ~ �89 �89 dO 

3 c = ~ c ~  + ~ 2 -  l c o  

(95) 

(96) 

(97) 
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Thus, if the choice of moments is based upon the asymptotic behavior, the 
second-order approximating system will consist of the basic five invariants, 
the three moments 4,3,1,j (the "heating-flux vector"), and the spherical 
moment 4'4,2. In total, the system will consist of nine equations in nine 
variables. 

Observe that, except for the energy, no second-order moment is included 
in the second-order approximation. The full set of second-order moments 
("the stress tensor") does appear in the third-order approximation. Since 
~,2 = •2.0, it follows that the three spherical moments 4,~,2,j have also to be 
included. Thus the third-order system will consist of 17 equations in 17 
variables. 

Let us turn to Part B. What expressions should one substitute for the 
4,* g,j,~ (or for the ~b~+e~)? The answer is furnished, again, by Theorem 5.2 
and is as follows. 

If  some moment 4,m.k,j is not chosen to be an independent variable, 
substitute for it the expression Pm,~,j(4,,.~,~), which is the corresponding 
approximation in (69). If, in turn, one of the ~z,r.~ is not an independent 
variable, substitute for it the respective approximation, and so on. The 
procedure just described terminates in at most m steps. 

The asymptotic formulas for the spherical moments of order two and 
three that appear in the formulation of the second and third approximations 
will be exhibited below. 

7. EXPLICIT C O M P U T A T I O N  OF SOME A S Y M P T O T I C  
FORMULAS A N D  EQUATIONS 

The computation of the a~.B was carried out by passage to an equivalent 
formulation, i.e., the problem was reformulated in terms of transformations 
acting in the space of homogeneous polynomials. Now we consider lower 
order terms. The equivalent problem will be set up as a transformation 
from Hm, the space of homogeneous polynomials of degree m in ~ = 
(~1, ~:2, ~:3) to Vm, the space of homogeneous polynomials in ~ and ~ (also of 
total degree m). This transformation commutes with rotations, so one is 
tempted to break Vm into a direct sum of irreducible subspaces. Unfortun- 
ately, many of the irreducible spaces in Vm form equivalence classes with 
respect to isomorphism. One can still try to work with known formulas for 
products of representations. It seems, however, that in this case a direct 
explicit computation is the fastest way. Some of the considerations for 
products of representations help to check the results obtained. 
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The basic computation will be that of the transformation T defined by 

Q(~) -+ (1/2~r)(1/2 r"') f Q[�89 + ~7) + �89 0)(~ - ~/) 

+ �89 0)~[~: - ~[]K(0) dO dq~ - f K(O) dO Q(r (98) 

where Q(s is a homogeneous polynomial. As an illustration, let us carry out 
the computation 

t '  l" 

( 1 / 2 = ) i j j  [(el - + (cos  0)(e,  - 7 , )  + (sin O)~I~: - ~q]] 

• [~:~ + ~2 + (cos 0)(~2 - ~ )  + (sin 0)~]~ - nl]K(O)dOd~ 

- f K(O) dO r162 (99) 

When multiplication of the first two factors in the integrand is carried out, 
followed by integration, all the terms involving ~ as well as cos 0 (not 
multiples of these) are going to drop out. So one need only compute 

(1/2~)~ff [(~1 + ~1)(~2 - ~2) + (cos2 0 ) ( ~  - ~ ) ( ~  - ~2) 

+ (sin ~ 0)~21r - ~7[2K(0) dO dcp (100) 

The result will be a linear combination of ~:~r ~1~, r and ~1~2. For the 
moment computation the first two terms are equivalent, as are the last two. 
It is necessary to write only one term of each pair. The factor ~:1~:2 was already 
computed. It is ~2,o = kco + }e2. As for the second factor, it is not difficult 
to show that 

(1/2rr)f ~i[u d~ = -�89162 - 7h)(~:2 -- ~/2) (101) 
ar .[~-~ 

When this identity is used one gets (�88 + �88 + �88 - c2)~2 .  When 
Cor is substracted, one finally gets 

Tr = �88 - Co)(~:1r - s~x~2) (102) 

Similarly, by using (26) one gets 

�88 Co)(3~ 2 -  ~ ~:~-  2~7~ + ~:2~ + ~ : ~ )  (103) Tr 

Since T ~  s~ 2 = 0, one gets for the spherical moment ~2,o,i+-~ 3s~ 2 - ~ se~ 2 
the result 
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The next spherical moment  will be a third-order one, ~ , l ,~  ~ ~ Y, ~:2. 

i = 1, 2, 3 (105) 

In the computat ion the following identity is used: 

.L~ - n  k -  

I t  follows that  

T~ Z,~_- ~ -  co~(~ :~ ~ -  :~ ~;~:~ + ~ ~ , ~ )  

and 

~ - -  ~ -  ~o~(~- ~ ~ ~ ~ -  ~ ~ ~ + ~ ~ ~ )  

For  the spherical moment  ~a,o,z ~ 5r a - 3 ~  ~ f 2  

For the simplest spherical moment  of  order four, ~b4.2 , 

(106) 

(107) 

(108) 

d(,~,o.ddt = ka($2.o.1 - $152) 

$2.o,1 - $152 = d2,o.1 exp(�88 

3 d$2,o. , /dt  = ~A($2,o,~ - 2512 + $ 2 + $22) 

$5.0.4 - -  2612 + $32 + Sa 2 ---- d2,o,4 exp(�88 

d$a,l ,1/dt  = �89 - {$~$2.o + �89 

+ $2.o.1$~ + $2.o.2$,) (114) 

(1 lO) 

(111) 

(112) 

(113) 

We have 

(109) 

Let  us exhibit the differential equations and the asymptotic formulas 
(67) for the following (unnormalized) spherical moments:  $2,0,1~-* ~:1~:2, 
($2,0,2 +-* ~l~a, $2,o,a +-* ~2~a), ~b2,o,~-* 3~19' - ~ ~k 2, ($2,0,5 +-+ 3~22 - ~ ~k2), 
~a,1,1 (4a,~,j *-+ r ~ r Sa,o,~ (~a,o,~ ~-~ 5f~ a - 3f, ~ ~:~). 

For  simplicity, denote first-order moments  $~ ~ f~ and set h = c2 - Co, 
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Substitute now the expressions obtained from (111) for 42,o,1 and 42,o,2 
and the expression from (I 13) for 42.0.~: 

,t4~.~.~/dt + �89 - ~414~.o + ~41(241 ~ - 4~ ~ - 4~ ~) + a~.0., expGat) 

+ 42(4142 + d2,o,1 exp(3At) + c, b314143 + d2,o,2 exp(�88 (115) 

This we integrate 

= d3,~,~ exp(�89 + ({41d2,o,4 + 242d~,o.1 + 24~d~,o.~) exp(�88 (116) 

Observe that the second term on the right decays faster than the first one. 
Thus it has to be replaced by moments, using Eqs. (111) and (113) and re- 
sulting in an asymptotic expression for 4~,1,~ in terms of lower order moments: 

2 4~,~.1 + �89 - ~414~,o,, - 24~42,o,~ - 24~4~,0,~ = d~,~,~ exp(�89 (117) 

In an analogous way [from (108)] 

d4~ o x/dt 9 , .  = ~A(4~.o.x - q~4~,o.~ + 24z,o,~4~ + 24z.0,~4~) (118) 

- 6414~ ~ - 64x4a ~ + 441 ~ = d~,o.1 exp(ght) (119) 

Unfortunately, the hydrodynamic equations are expressed in terms of ordinary 
moments, so one has to express the latter in terms of  spherical moments. We 
will do this with a "hydrodynamic notation." Let us define the thermo- 
hydrodynamic variables in correspondence with those used in this paper. 
The variables below depend, of course, on x and t: 

P ~ ~(o,0,o) 

u~, i = 1, 2, 3 : pul +-* #~1.o.o) ~ 41 e-~ ~1 

F_:: pE~�89162 + r + 4~o.o.~,)~ �89 �89 ~ ~ ~ 
k 

p(3Tl~ - E )  ~ 2~(~.o.o) + ~(o,~,o~ + ~(o,o,~ ~ 4(~.o,~) ~ 3~1 ~ - ~ r 
/r 

R~ : 

(120) 

(121) 

(122) 

(123) 

(124) 

1 ~(4~,o,1 - 343.1.1) (125) 

pR1 +-~ 1r ~ ~ 2~__+ �89 + ~b(1,2,o) + ~b(1,o,2~)+-~ ~3,1,1 (126) 
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The equations (90) for the moments up to order two will be 

ap ~ a--i + ~ pu~ = 0 (127) 

apuj ~ a 
at + ~ pT~s = 0 (128) 

By (90) and (102) 

apT:~st + ~ ~a PP~:~ = ~3 Ap2(Tj ~ _ ujuk), j ~ k (129) 

By (90) and (103) 

3 ( 
a t  + ~ ax~ pP*j: = 4 ~pZ T~ 3 _ 3 E - u 7 + -~ ue z (130) 

In particular 

"'~t'" + pR~ = 0 (131) 

The Euler equations are derived by inserting the absolute limits for T~j 
from (111) and (1 t3) (i.e., the right-hand side in these equations is taken to be 
zero). The limiting values of R~ are obtained from (116). Equation (127) 
remains unchanged. Equation (128) minus (127) multiplied by u s becomes 

auj x-" auj 1 ~p (132) 
a-7 + pa , 

where p = � 8 9  ~.e ue z) = ~pT. Thus T is indeed some normalized 
temperature. 

Equation (131) with the limit (116) becomes 

apE 5 a 
O---i- + "3 ~ -~i pu,E = 0 (133) 

In the second approximation, Eqs. (127) and (132) are unchanged. 
Equation (131) holds (R~ are now free variables) and four additional equations 
for R~ and the fourth-order moment ff~.2 have to be added. 

The third approximation restricted to moments of order two consists of 
Eqs. (127)-(130), where in the last two equations one has to substitute for 
pP~j~ using the asymptotic formulas (117) and (119). For this it is enough to 
know the asymptotic formulas for p P ~ ,  pP~2, and pP~23. The equation for 
PPll~ is obtained via (125) by the difference of Eqs. (117) and (119): 

pe111--> "~p~[3ul(3TI1 - -  2E) - 6T12u~ 

- 6Txaua + 6u~u~ ~ + 6u~ua ~ - uu~ ~] + ~pR~ (134) 
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The computation of pPl12 is simpler if invariance (under rotations) 
arguments are used. Consider the two rotations U and U- 1: 

u: r -+ ( 1 / v ~ ) ( ~  + ~) ,  ~ ~ (1 /V~) (~  - ~1) 

Express pPl12 +-> ~12~2 by 

3~d~2 = v ~ { [ ( 1 / v % ( ~ l  + ~) ]~  - [ ( 1 / v ~ ) ( ~  - ~)]~} - ~ d  

Perform the rotations on (134) and compute the combination [under U: ul -+ 
(1/V~)(u~ + u2), TlI-+ �89 + T22 + 2T~2), u3 remains unaltered, and so 
on]. The result is 

pPl l z -+  102[u2(5T~ - 21"22 - E)  + 8uzT12 

-- 2usT23 + 2u22 + 2u2u32 - -  8U12/~/2] "q- } p R  2 (135) 

Operate on the terms in (135) by rotating by V and V -1, where 

v-~:  ~1-~(1 /v%(r  + &), ~ - + ( 1 / v ~ ) ( ~  - ~ )  

Then 

Hence 

~1~2& = � 8 9  + ~3)]~ --  [ ( 1 / V % ( ( ~  -- ~1)] ~ 

pP123 "~" p2(ulT23 + uzT18 + u3T12 - 2ulu2u3) (136) 

In order to complete the derivation, one has to insert (134)-(136) into 
the appropriate formulas. 

It seems that the resulting formulas are too complicated to be treated 
explicitly and a call for a general approach is in order. 

Let us conclude this section with some remarks pertaining to kernels 
having infinite cross section. 

The dependence of the hydrodynamic equations (110)-(130) on the 
explicit form of the collision kernel is via the constant 

A = c 2 -  Co = f ( c o s  2 0 -  1)K(0)d0 (137) 

is finite for some kernels having a singularity at 0 -- 0. For ~ to be finite, 
K(O) may have, near zero, a rate of growth of the form 0 -3+~. 

Let us define K~(O) by 

xN(o) = K(O), IK(O)l ~ U 
(138) 

Kz~(O) = iV, K(O) >_. N 
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and 

~,u = f (cos 2 0 - 1)K~v(0) dO 

Then,  clearly, hN-+ h. 
Equat ions (110)-(130) consist of  two parts. Equat ions (110)-(119) exhibit 

asymptot ic  formulas that  are valid for  the spatially homogeneous  case. 
Equat ions (120)-(130) exhibit the the rmohydrodynamic  equations suggested 
for  the spatially inhomogeneous case. Equat ions (110)-(119) are continuous 
with respect to the parameter  A; therefore they are welt defined for  K(O). In 
this way, kernels having a singularity at 0 = 0, as specified above, can be 
treated. The Maxwellian kernel falls into this category, as is shown in the 
appendix. 

APPENDIX.  ESTIMATE OF THE S INGULARITY  OF 
M A X W E L L ' S  KERNEL 

For  n --- 5, Eq. (9) of  Ref. 12 (Vol. 2, p. 40) reads 

f j  ,x ~r 0 = (A.1) 
- [1 - x 2 Z e(x/b)*]ll2 

where x '  is the first zero of  the denominator  (if n = 5, the outcome is 
independent  of  V; thus one may take V = 1 and get a = cob). Equat ion 
(A.1) serves as an (implicit) definition of  0 as a function o f  b. 

Now K(O) is defined by 

fo oo K(O) dO = - K(O) dO = ~ db (A.2) 
1 o o 

where 0 ~< b < 0% 0 <~ 0 ~< rr/2, 0i = O(bi), i = 0, 1, and /~ is a constant  
(n = 5), which depends on mass, density, etc. Thus  

K(O) = - - ~  - (A.3) 

For  b = oo, x '  = 1. The right-hand side of  (A.1) is equal to zr/2, i.e., 0 = 0. 
Denote ,  for  convenience, y = x '  and study the dependence of  y on b: 

1 - y~ eY~ 0 

Differentiate: 

4cya, ~ 4cy ~ 
dy 2 y +  = b5 db b 4 ] 
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Thus 

C c2 
y =  1 - ~ + b %  . . . .  (A.4) 

dy 2c 8c 2 
= b5 b9 + ...  ( A . 5 )  

Thus,  for  large b 

c 
y ~ 1 - 2b--- i = z (A.6) 

Define 9(b) by 

2 ~(b) = (1 - - x 2 )  1'2 (A.7) 

It  follows that  ~o(b) ~ O(b). It  is not  difficult to  see that  also ~o'(b) ~ O'(b) 
[~(oo) = 0(oo) = 0 and the reduct ion is done  in a "cons i s ten t"  manner ;  the 
suspicious reader may  verify it by another  expansion]. Thus 

R d b  . d b  
~ K - ~  = K(O) (A.8) 

Integrate  (A.7) to get 

- q~(b) = sin -1 1 - , 92(b) ,.~ b-- 7 

db b 3 

db b 3 
. . . . .  ~08/2e (A.9) 

Thus, taking (A.8) into account,  

K(O) ~ 0 -812 x const  

near  0 = 0. 
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